- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Т.П. Назарова изучала особенности решения задач слабовидящими способом математического выражения предметно-количественных отношений, а также предметно-действенным способом, путем реальных действий с предметами. Некоторые задания были специально направлены на выяснение возможностей слабовидящих детей оперировать образами предметов в уме.
В исследовании проводилось сравнение с нормально видящими сверстниками. Дети выполняли четыре группы заданий. В заданиях первой группы нужно было установить разностные отношения между величинами. Вторая группа заданий предусматривала выяснение крат ных отношений между величинами по длине, третья группа заданий – установление аналогичных отношений по объему. В четвертой группе заданий нужно было установить зависимости между двумя видами отношений – по расстоянию и по времени.
Каждое задание включало в себя элементы обучения. Если школьник не справлялся с заданием, ему оказывалась поэтапная помощь. Подробное рассмотрение процесса правильных решений, допускаемых детьми ошибок, а также характера и меры помощи, потребовавшейся испытуемым для достижения правильного решения, позволило судить о степени сформированности у слабовидящих детей мыслительных действий, необходимых для решения задач.
Анализ полученных данных показал, что слабовидящие дети в ситуации решения задачи чаще, чем дети с нормальным зрением, действовали самыми элементарными способами, ориентируясь лишь на внешние признаки, представленные в тексте задач (порядок и соотношение чисел, отдельные слова и словосочетания текста). Такой способ был описан ранее Н. А. Менчинской, Н. Ф. Слезиной, И. М. Соловьевым, М. И. Кузьмицкой, Т. В. Розановой и др.
А. А. Люблинская назвала его решением по принципу «короткого замыкания». Более распространенными у слабовидящих детей были решения следующего уровня, в которых дети правильно устанавливали количественные отношения между отдельными условиями задачи, но понять всю совокупность условий и выразить их математическим способом они не могли.
Различия в успешности решения задач предметно-действенным способом между слабовидящими и нормально видящими второклассниками были выражены еще более отчетливо, чем различия в успешности решения задач способом математических вычислений. Слабовидящие дети часто действовали с предметами без системы, не соблюдая даже внешних правил порядка, и с большим трудом объединяли предметы в совокупности в соответствии с условиями задач.Наиболее трудными оказались для слабовидящих детей те практические задачи, в которых было необходимо ориентироваться на пространственные признаки предметов (их отношения по длине и по объему). Слабовидящие дети слабо владели умением сравнивать предметы по длине.
Отдельные второклассники не знали, как наложить один плоский предмет на другой, чтобы сравнить их по протяженности. Как показали дополнительные опыты, способом наложения с целью сравнения не умело пользоваться большинство учеников I класса. Что касается нормально видящих детей, то у них эти умения складываются еще в среднем дошкольном возрасте.
У слабовидящих учеников II класса наблюдались попытки использовать мерку для деления предмета на части (по длине), однако при этом они испытывали затруднения. У многих слабовидящих детей не сложилось понимания того, что в линейке главное – это протяженность между делениями, а не сами деления. Аналогично этому при построении чертежа пути дети в протяженности клеток не усматривали модели, изображающей пространственную протяженность километров.
У слабовидящих второклассников заметно большие затруднения, чем у нормально видящих сверстников, вызвали те задания, где нужно было мысленно представить себе пространственные соотношения между целым и частью по длине или по объему.
Слабовидящие учащиеся IV класса решали задачи в целом более успешно, чем слабовидящие второклассники. Они полнее учитывали условия задач, правильнее устанавливали соотношения между величинами. Их внешние действия при решении практических задач были значительно более упорядоченными и точными, соответствующими требованиям задач. По успешности решения относительно легких задач слабовидящие четвероклассники не отличались от сверстников с нормальным зрением.
Вместе с тем при решении задач на установление пространственных соотношений по длине или объему, а также задач на пространственно-временные зависимости они допускали ошибки и нуждались в дополнительной помощи в большей степени, чем нормально видящие дети.
У слабовидяших детей имелись заметные индивидуальные различия в успешности решения задач. В одном классе находились дети, значительно различающиеся по уровню развития мыслительной деятельности. Наблюдавшиеся различия не могли быть прямо объяснены степенью выраженности и характером глазного заболевания, поскольку дети, имеющие одинаковую остроту зрения и страдающие одним и тем же заболеванием, обнаружили разную успешность при решении задач.
Вместе с тем необходимо иметь в виду, что атрофия зрительного нерва встречалась у наших испытуемых в единичных случаях и что в опытах не участвовали дети, испытывающие повышенные трудности в обучении.