- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Корректные, или лояльные приемы спора немногочисленны и просты.
Нелояльные приемы спора представляют собой разно- образные нарушения уже известных нам правил доказательства. К примеру, в качестве аргументов могут использоваться ложные, гипотетические или противоречащие друг другу суждения; истинность аргументов может зависеть от истинности тезиса; подтверждение или опровержение тезиса может выводиться из аргументов, недостаточных для этого; также возможны нарушения правил умозаключений, в форме которых выражается демонстрация того или иного доказательства.
Чаще всего использование нелояльных приемов дискуссии связано с подменой тезиса: вместо того, чтобы доказывать одно положение, доказывают другое, которые только по видимости сходно с первым.
Например, тезис: Любой ромб имеет равные углы доказывается следующим образом. Если у треугольника все стороны равны, то у него также равны все углы. Следовательно, если у
четырехугольника равны все стороны, то у него равны и все углы. Четырехугольник с равными сторонами – это ромб, значит любой ромб имеет равные углы. В данном случае тезис
обосновывается с помощью подмены рассуждения о ромбах рассуждением о треугольниках: из того, что равенство сторон треугольника эквивалентно равенству его углов выводится заключение, по которому равенство сторон четырехугольника также означает равенство его углов; однако то, что справедливо для одних геометрических объектов, может быть не- справедливым для других. Несмотря на это, рассмотренное доказательство на первый взгляд кажется правильным и убедительным, т. е. подмена тезиса, на который оно базируется, заметна далеко не сразу.
Подмена тезиса выражается в различных формах. Нередко в процессе спора человек стремится тезис противника сформулировать как можно более широко, а свой – максимально сузить, т. к. более общее положение труднее доказать, чем утверждение меньшей степени общности. Иногда один из спорящих начинает задавать своему оппоненту множество вопросов, часто даже не относящихся к делу, с целью отвлечь его внимание и утопить спор в пространных разговорах.
Довольно часто подмена тезиса проявляется в использовании синонимов с различной смысловой окраской. Например, слова просить, клянчить, ходатайствовать, молить, умолять, являясь синонимами, обозначают одно и то же действие, однако, в зависимости от использования каждого из этих терминов, общий смысл сказанного (т. е. контекста, в котором они употребляются) несколько меняется. Синонимы могут иметь положительный или отрицательный, хвалебный или уничижительный оттенок. Так, употребление слова военщина вместо термина военные или – мальчишки вместо – молодые люди представляют собой неявную подмену тезиса: речь идет вроде бы об одном и том же, однако использование определенного синонима уже означает какую-то оценку, некое незаметное, на первый взгляд, утверждение. Разновидностью это- го приема является «навешивание ярлыков» на противника, его позицию, утверждения.
Подмена тезиса лежит в основе весьма распространенной ошибки, называемой переходом в другой род. Она имеет две разновидности:
В первом случае вместо одного положения пытаются до- казать другое – более общее по отношению к первому, а значит и более «сильное». Вспомним, истинность общего суждения действительно обуславливает истинность частного (если все караси являются рыбами, то некоторые из карасей – это также обязательно рыбы). Однако, вполне может получиться, что более общее положение окажется ложным и обосновать с его помощью частный тезис не удастся.
Например, если вместо утверждения: Диагонали любого ромба взаимно перпендикулярны пытаются доказать более общее высказывание: Диагонали любого параллелограмма взаимно перпендикулярны (на том основании, что все ромбы – это параллелограммы), то оказывается, что сделать это невозможно, т. к. второе суждение не является истинным.
Во втором случае, наоборот, вместо обоснования общего положения стремятся доказать частное и из истинности частного высказывания вывести истинность общего, что неверно (если некоторые грибы съедобны, то это не означает, что и все грибы съедобны).
Например, если вместо утверждения: Любой ромб имеет равные диагонали доказывают частное положение: Любой квадрат имеет равные диагонали (на том основании, что все квадраты – это ромбы), то первое суждение все равно остается не- обоснованным, несмотря на истинность второго.